Linear Arithmetic Satisfiability via Strategy Improvement

نویسندگان

  • Azadeh Farzan
  • Zachary Kincaid
چکیده

Satisfiability-checking of formulas in the theory of linear rational arithmetic (LRA) has broad applications including program verification and synthesis. Satisfiability Modulo Theories (SMT) solvers are effective at checking satisfiability of the ground fragment of LRA, but applying them to quantified formulas requires a costly quantifier elimination step. This article presents a novel decision procedure for LRA that leverages SMT solvers for the ground fragment of LRA, but avoids explicit quantifier elimination. The intuition behind the algorithm stems from an interpretation of a quantified formula as a game between two players, whose goals are to prove that the formula is either satisfiable or not. The algorithm synthesizes a winning strategy for one of the players by iteratively improving candidate strategies for both. Experimental results demonstrate that the proposed procedure is competitive with existing solvers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving quantified linear arithmetic by counterexample-guided instantiation

This paper presents a framework to derive instantiation-based decision procedures for satisfiability of quantified formulas in first-order theories, including its correctness, implementation, and evaluation. Using this framework we derive decision procedures for linear real arithmetic (LRA) and linear integer arithmetic (LIA) formulas with one quantifier alternation. We discuss extensions of th...

متن کامل

Linear-Time Zero-Knowledge Proofs for Arithmetic Circuit Satisfiability

We give computationally efficient zero-knowledge proofs of knowledge for arithmetic circuit satisfiability over a large field. For a circuit with N addition and multiplication gates, the prover only uses O(N) multiplications and the verifier only uses O(N) additions in the field. If the commitments we use are statistically binding, our zero-knowledge proofs have unconditional soundness, while i...

متن کامل

A Survey of Satisfiability Modulo Theory

Satisfiability modulo theory (SMT) consists in testing the satisfiability of first-order formulas over linear integer or real arithmetic, or other theories. In this survey, we explain the combination of propositional satisfiability and decision procedures for conjunctions known as DPLL(T), and the alternative “natural domain” approaches. We also cover quantifiers, Craig interpolants, polynomial...

متن کامل

On the Satisfiability of Modular Arithmetic Formulae

Modular arithmetic is the underlying integral computation model in conventional programming languages. In this paper, we discuss the satisfiability problem of propositional formulae in modular arithmetic over the finite ring Z2ω . Although an upper bound of 2 2 O(n4) can be obtained by solving alternation-free Presburger arithmetic, it is easy to see that the problem is in fact NP-complete. Fur...

متن کامل

On the Satisfiability of Modular Arithmetic Formula

Modular arithmetic is the underlying integer computation model in conventional programming languages. In this paper, we discuss the satisfiability problem of modular arithmetic formulae over the finite ring Z2ω . Although an upper bound of 2 2 4) can be obtained by solving alternation-free Presburger arithmetic, it is easy to see that the problem is in fact NP-complete. Further, we give an effi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016